American University of Beirut Department of Electrical and Computer Engineering

EECE 440 Signals and Systems
Homework 3: Due July 18, 2006

Problem 1

Two signals $\mathrm{m}_{1}(\mathrm{t})$ and $\mathrm{m}_{2}(\mathrm{t})$, both band-limited to $500 \mathrm{rad} / \mathrm{s}$, are to be transmitted simultaneously over a channel as shown below

The modulated signal at point c is transmitted over a channel. Determine the bandwidth of the output signal at point c .

Problem 2

The spectrum of the two band-limited signals $s_{1}(t)$ and $s_{2}(t)$ are shown below.

Determine the bandwidth of the signal $y(t)$ given by: $y(t)=s_{1}(t)+10 s_{2}(t) \cos 10 t$.

Problem 3

The signal

$$
\mathrm{f}(\mathrm{t})=\operatorname{rect}\left(\frac{\mathrm{t}}{\mathrm{~T}}\right) \cos \omega_{0} \mathrm{t}
$$

is applied to the following system

The filter in the above figure is considered to be a unity gain ideal band-pass filter of mid-frequency (ω_{0}) and bandwidth (2 W) rad/s. Determine the output of this filter. Assume that rect $(\mathrm{t} / \mathrm{T})$ has a bandwidth of W rad/s.

Problem 4

An electric filter system has the frequency response

$$
H(\omega)=\frac{j \omega}{1+j \omega}
$$

What type of filter is this?

Problem 5

Consider the signal $s(t)$ given by: $s(t)=12 \cos (160 t)+20 \cos (220 t)$. This signal is present at the input of a unity gain ideal band-pass filter of midfrequency $210 \mathrm{rad} / \mathrm{s}$ and bandwidth $25 \mathrm{rad} / \mathrm{s}$. Determine the average power at the output of the filter.

Problem 6

The spectrum of the signals $f(t)$ and $g(t)$ are shown below. Express $g(t)$ as a function of $f(t)$.

Problem 7

A sinusoidal signal of frequency 1 Hz is to be sampled periodically. Find the maximum allowable time interval between samples.

Problem 8

The system shown below is used for scrambling audio signals.

The output $\mathrm{y}(\mathrm{t})$ is the scrambled version of the input signal $\mathrm{m}(\mathrm{t})$. Let the spectrum of the signal $m(t)$ be as shown below, write $m(t)$ as a function of $y(t)$

Problem 9

An amplitude modulated wave-form has the form

$$
\mathrm{s}(\mathrm{t})=10[1+0.5 \cos (200 \pi \mathrm{t})+0.5 \cos (400 \pi \mathrm{t})] \cos (2000 \pi \mathrm{t})
$$

a. Sketch the spectrum of $s(t)$
b. Find the total power.
c. Find the total side-band power
d. What is the modulation index?

Problem 10

An AM transmitter develops a carrier power output of 50 Watts across 1 Ohm resistive load. The carrier is modulated by a single tome with a modulation index of 0.8 . Write the expression of the AM signal $s(t)$ assume $\mathrm{f}_{\mathrm{m}}=5 \mathrm{Khz}$ and $\mathrm{f}_{\mathrm{c}}=1 \mathrm{Mhz}$.

Problem 11

The envelope of the output of an AM modulator is shown below

Determine the following:
a. The modulation index.
b. The carrier amplitude.

Problem 12

An AM modulator operates with the message signal: $m(t)=-6 \cos (20 \pi t)-$ $2 \cos (60 \pi t)$. The unmodulated carrier is given by: $c(t)=100 \cos (200 \pi t)$ and the modulation index is 0.5 .
a. Write the time-domain expression of the AM wave $s(t)$.
b. Write the time-domain expression of the USB of $s(t)$ including carrier.

